Spectral Methods for Time-dependent Studies of Accretion Flows. Ii. Two-dimensional Hydrodynamic Disks with Self-gravity

نویسندگان

  • CHI-KWAN CHAN
  • DIMITRIOS PSALTIS
  • FERYAL ÖZEL
چکیده

Spectral methods are well suited for solving hydrodynamic problems in which the self-gravity of the flow needs to be considered. Because Poisson’s equation is linear, the numerical solution for the gravitational potential for each individual mode of the density can be pre-computed, thus reducing substantially the computational cost of the method. In this second paper, we describe two different approaches to computing the gravitational field of a two-dimensional flow with pseudo-spectral methods. For situations in which the density profile is independent of the third coordinate (i.e., an infinite cylinder), we use a standard Poisson solver in spectral space. On the other hand, for situations in which the density profile is a delta function along the third coordinate (i.e., an infinitesimally thin disk), or any other function known a priori, we perform a direct integration of Poisson’s equation using a Green’s functions approach. We devise a number of test problems to verify the implementations of these two methods. Finally, we use our method to study the stability of polytropic, self-gravitating disks. We find that, when the polytropic index Γ is ≤ 4/3, Toomre’s criterion correctly describes the stability of the disk. However, when Γ> 4/3 and for large values of the polytropic constant K, the numerical solutions are always stable, even when the linear criterion predicts the contrary. We show that, in the latter case, the minimum wavelength of the unstable modes is larger than the extent of the unstable region and hence the local linear analysis is inapplicable. Subject headings: accretion disks — black hole physics — hydrodynamics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Methods for Time-Dependent Studies of Accretion Flows. I. Two-dimensional, Viscous, Hydrodynamic Disks

We present a numerical method for studying the normal modes of accretion flows around black holes. In this first paper, we focus on two-dimensional, viscous, hydrodynamic disks in pseudo-Newtonian potentials, for which the linear modes have been calculated analytically in previous investigations. We use a pseudo-spectral algorithm to evolve the hydrodynamic equations and devise a number of test...

متن کامل

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

A simple model for accretion disks in the post-Newtonian approximation

p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...

متن کامل

Spectral Methods for Time-dependent Studies of Accretion Flows. Iii. Three-dimensional, Self-gravitating, Magnetohydrodynamic Disks

Accretion disks are three-dimensional, turbulent, often self-gravitating, magnetohydrodynamic flows, which can be modeled in detail with numerical simulations. In this paper, we present a new algorithm that is based on a spectral decomposition method to simulate such flows. Because of the high order of the method, we can solve the induction equation in terms of the magnetic potential and, there...

متن کامل

General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow

Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008